What are the Key Properties of Bitcoin? - NAKAMOTO

Technical: Taproot: Why Activate?

This is a follow-up on https://old.reddit.com/Bitcoin/comments/hqzp14/technical_the_path_to_taproot_activation/
Taproot! Everybody wants it!! But... you might ask yourself: sure, everybody else wants it, but why would I, sovereign Bitcoin HODLer, want it? Surely I can be better than everybody else because I swapped XXX fiat for Bitcoin unlike all those nocoiners?
And it is important for you to know the reasons why you, o sovereign Bitcoiner, would want Taproot activated. After all, your nodes (or the nodes your wallets use, which if you are SPV, you hopefully can pester to your wallet vendoimplementor about) need to be upgraded in order for Taproot activation to actually succeed instead of becoming a hot sticky mess.
First, let's consider some principles of Bitcoin.
I'm sure most of us here would agree that the above are very important principles of Bitcoin and that these are principles we would not be willing to remove. If anything, we would want those principles strengthened (especially the last one, financial privacy, which current Bitcoin is only sporadically strong with: you can get privacy, it just requires effort to do so).
So, how does Taproot affect those principles?

Taproot and Your /Coins

Most HODLers probably HODL their coins in singlesig addresses. Sadly, switching to Taproot would do very little for you (it gives a mild discount at spend time, at the cost of a mild increase in fee at receive time (paid by whoever sends to you, so if it's a self-send from a P2PKH or bech32 address, you pay for this); mostly a wash).
(technical details: a Taproot output is 1 version byte + 32 byte public key, while a P2WPKH (bech32 singlesig) output is 1 version byte + 20 byte public key hash, so the Taproot output spends 12 bytes more; spending from a P2WPKH requires revealing a 32-byte public key later, which is not needed with Taproot, and Taproot signatures are about 9 bytes smaller than P2WPKH signatures, but the 32 bytes plus 9 bytes is divided by 4 because of the witness discount, so it saves about 11 bytes; mostly a wash, it increases blockweight by about 1 virtual byte, 4 weight for each Taproot-output-input, compared to P2WPKH-output-input).
However, as your HODLings grow in value, you might start wondering if multisignature k-of-n setups might be better for the security of your savings. And it is in multisignature that Taproot starts to give benefits!
Taproot switches to using Schnorr signing scheme. Schnorr makes key aggregation -- constructing a single public key from multiple public keys -- almost as trivial as adding numbers together. "Almost" because it involves some fairly advanced math instead of simple boring number adding, but hey when was the last time you added up your grocery list prices by hand huh?
With current P2SH and P2WSH multisignature schemes, if you have a 2-of-3 setup, then to spend, you need to provide two different signatures from two different public keys. With Taproot, you can create, using special moon math, a single public key that represents your 2-of-3 setup. Then you just put two of your devices together, have them communicate to each other (this can be done airgapped, in theory, by sending QR codes: the software to do this is not even being built yet, but that's because Taproot hasn't activated yet!), and they will make a single signature to authorize any spend from your 2-of-3 address. That's 73 witness bytes -- 18.25 virtual bytes -- of signatures you save!
And if you decide that your current setup with 1-of-1 P2PKH / P2WPKH addresses is just fine as-is: well, that's the whole point of a softfork: backwards-compatibility; you can receive from Taproot users just fine, and once your wallet is updated for Taproot-sending support, you can send to Taproot users just fine as well!
(P2WPKH and P2WSH -- SegWit v0 -- addresses start with bc1q; Taproot -- SegWit v1 --- addresses start with bc1p, in case you wanted to know the difference; in bech32 q is 0, p is 1)
Now how about HODLers who keep all, or some, of their coins on custodial services? Well, any custodial service worth its salt would be doing at least 2-of-3, or probably something even bigger, like 11-of-15. So your custodial service, if it switched to using Taproot internally, could save a lot more (imagine an 11-of-15 getting reduced from 11 signatures to just 1!), which --- we can only hope! --- should translate to lower fees and better customer service from your custodial service!
So I think we can say, very accurately, that the Bitcoin principle --- that YOU are in control of your money --- can only be helped by Taproot (if you are doing multisignature), and, because P2PKH and P2WPKH remain validly-usable addresses in a Taproot future, will not be harmed by Taproot. Its benefit to this principle might be small (it mostly only benefits multisignature users) but since it has no drawbacks with this (i.e. singlesig users can continue to use P2WPKH and P2PKH still) this is still a nice, tidy win!
(even singlesig users get a minor benefit, in that multisig users will now reduce their blockchain space footprint, so that fees can be kept low for everybody; so for example even if you have your single set of private keys engraved on titanium plates sealed in an airtight box stored in a safe buried in a desert protected by angry nomads riding giant sandworms because you're the frickin' Kwisatz Haderach, you still gain some benefit from Taproot)
And here's the important part: if P2PKH/P2WPKH is working perfectly fine with you and you decide to never use Taproot yourself, Taproot will not affect you detrimentally. First do no harm!

Taproot and Your Contracts

No one is an island, no one lives alone. Give and you shall receive. You know: by trading with other people, you can gain expertise in some obscure little necessity of the world (and greatly increase your productivity in that little field), and then trade the products of your expertise for necessities other people have created, all of you thereby gaining gains from trade.
So, contracts, which are basically enforceable agreements that facilitate trading with people who you do not personally know and therefore might not trust.
Let's start with a simple example. You want to buy some gewgaws from somebody. But you don't know them personally. The seller wants the money, you want their gewgaws, but because of the lack of trust (you don't know them!! what if they're scammers??) neither of you can benefit from gains from trade.
However, suppose both of you know of some entity that both of you trust. That entity can act as a trusted escrow. The entity provides you security: this enables the trade, allowing both of you to get gains from trade.
In Bitcoin-land, this can be implemented as a 2-of-3 multisignature. The three signatories in the multisgnature would be you, the gewgaw seller, and the escrow. You put the payment for the gewgaws into this 2-of-3 multisignature address.
Now, suppose it turns out neither of you are scammers (whaaaat!). You receive the gewgaws just fine and you're willing to pay up for them. Then you and the gewgaw seller just sign a transaction --- you and the gewgaw seller are 2, sufficient to trigger the 2-of-3 --- that spends from the 2-of-3 address to a singlesig the gewgaw seller wants (or whatever address the gewgaw seller wants).
But suppose some problem arises. The seller gave you gawgews instead of gewgaws. Or you decided to keep the gewgaws but not sign the transaction to release the funds to the seller. In either case, the escrow is notified, and if it can sign with you to refund the funds back to you (if the seller was a scammer) or it can sign with the seller to forward the funds to the seller (if you were a scammer).
Taproot helps with this: like mentioned above, it allows multisignature setups to produce only one signature, reducing blockchain space usage, and thus making contracts --- which require multiple people, by definition, you don't make contracts with yourself --- is made cheaper (which we hope enables more of these setups to happen for more gains from trade for everyone, also, moon and lambos).
(technology-wise, it's easier to make an n-of-n than a k-of-n, making a k-of-n would require a complex setup involving a long ritual with many communication rounds between the n participants, but an n-of-n can be done trivially with some moon math. You can, however, make what is effectively a 2-of-3 by using a three-branch SCRIPT: either 2-of-2 of you and seller, OR 2-of-2 of you and escrow, OR 2-of-2 of escrow and seller. Fortunately, Taproot adds a facility to embed a SCRIPT inside a public key, so you can have a 2-of-2 Taprooted address (between you and seller) with a SCRIPT branch that can instead be spent with 2-of-2 (you + escrow) OR 2-of-2 (seller + escrow), which implements the three-branched SCRIPT above. If neither of you are scammers (hopefully the common case) then you both sign using your keys and never have to contact the escrow, since you are just using the escrow public key without coordinating with them (because n-of-n is trivial but k-of-n requires setup with communication rounds), so in the "best case" where both of you are honest traders, you also get a privacy boost, in that the escrow never learns you have been trading on gewgaws, I mean ewww, gawgews are much better than gewgaws and therefore I now judge you for being a gewgaw enthusiast, you filthy gewgawer).

Taproot and Your Contracts, Part 2: Cryptographic Boogaloo

Now suppose you want to buy some data instead of things. For example, maybe you have some closed-source software in trial mode installed, and want to pay the developer for the full version. You want to pay for an activation code.
This can be done, today, by using an HTLC. The developer tells you the hash of the activation code. You pay to an HTLC, paying out to the developer if it reveals the preimage (the activation code), or refunding the money back to you after a pre-agreed timeout. If the developer claims the funds, it has to reveal the preimage, which is the activation code, and you can now activate your software. If the developer does not claim the funds by the timeout, you get refunded.
And you can do that, with HTLCs, today.
Of course, HTLCs do have problems:
Fortunately, with Schnorr (which is enabled by Taproot), we can now use the Scriptless Script constuction by Andrew Poelstra. This Scriptless Script allows a new construction, the PTLC or Pointlocked Timelocked Contract. Instead of hashes and preimages, just replace "hash" with "point" and "preimage" with "scalar".
Or as you might know them: "point" is really "public key" and "scalar" is really a "private key". What a PTLC does is that, given a particular public key, the pointlocked branch can be spent only if the spender reveals the private key of the given public key to you.
Another nice thing with PTLCs is that they are deniable. What appears onchain is just a single 2-of-2 signature between you and the developemanufacturer. It's like a magic trick. This signature has no special watermarks, it's a perfectly normal signature (the pledge). However, from this signature, plus some datta given to you by the developemanufacturer (known as the adaptor signature) you can derive the private key of a particular public key you both agree on (the turn). Anyone scraping the blockchain will just see signatures that look just like every other signature, and as long as nobody manages to hack you and get a copy of the adaptor signature or the private key, they cannot get the private key behind the public key (point) that the pointlocked branch needs (the prestige).
(Just to be clear, the public key you are getting the private key from, is distinct from the public key that the developemanufacturer will use for its funds. The activation key is different from the developer's onchain Bitcoin key, and it is the activation key whose private key you will be learning, not the developer's/manufacturer's onchain Bitcoin key).
So:
Taproot lets PTLCs exist onchain because they enable Schnorr, which is a requirement of PTLCs / Scriptless Script.
(technology-wise, take note that Scriptless Script works only for the "pointlocked" branch of the contract; you need normal Script, or a pre-signed nLockTimed transaction, for the "timelocked" branch. Since Taproot can embed a script, you can have the Taproot pubkey be a 2-of-2 to implement the Scriptless Script "pointlocked" branch, then have a hidden script that lets you recover the funds with an OP_CHECKLOCKTIMEVERIFY after the timeout if the seller does not claim the funds.)

Quantum Quibbles!

Now if you were really paying attention, you might have noticed this parenthetical:
(technical details: a Taproot output is 1 version byte + 32 byte public key, while a P2WPKH (bech32 singlesig) output is 1 version byte + 20 byte public key hash...)
So wait, Taproot uses raw 32-byte public keys, and not public key hashes? Isn't that more quantum-vulnerable??
Well, in theory yes. In practice, they probably are not.
It's not that hashes can be broken by quantum computes --- they're still not. Instead, you have to look at how you spend from a P2WPKH/P2PKH pay-to-public-key-hash.
When you spend from a P2PKH / P2WPKH, you have to reveal the public key. Then Bitcoin hashes it and checks if this matches with the public-key-hash, and only then actually validates the signature for that public key.
So an unconfirmed transaction, floating in the mempools of nodes globally, will show, in plain sight for everyone to see, your public key.
(public keys should be public, that's why they're called public keys, LOL)
And if quantum computers are fast enough to be of concern, then they are probably fast enough that, in the several minutes to several hours from broadcast to confirmation, they have already cracked the public key that is openly broadcast with your transaction. The owner of the quantum computer can now replace your unconfirmed transaction with one that pays the funds to itself. Even if you did not opt-in RBF, miners are still incentivized to support RBF on RBF-disabled transactions.
So the extra hash is not as significant a protection against quantum computers as you might think. Instead, the extra hash-and-compare needed is just extra validation effort.
Further, if you have ever, in the past, spent from the address, then there exists already a transaction indelibly stored on the blockchain, openly displaying the public key from which quantum computers can derive the private key. So those are still vulnerable to quantum computers.
For the most part, the cryptographers behind Taproot (and Bitcoin Core) are of the opinion that quantum computers capable of cracking Bitcoin pubkeys are unlikely to appear within a decade or two.
So:
For now, the homomorphic and linear properties of elliptic curve cryptography provide a lot of benefits --- particularly the linearity property is what enables Scriptless Script and simple multisignature (i.e. multisignatures that are just 1 signature onchain). So it might be a good idea to take advantage of them now while we are still fairly safe against quantum computers. It seems likely that quantum-safe signature schemes are nonlinear (thus losing these advantages).

Summary

I Wanna Be The Taprooter!

So, do you want to help activate Taproot? Here's what you, mister sovereign Bitcoin HODLer, can do!

But I Hate Taproot!!

That's fine!

Discussions About Taproot Activation

submitted by almkglor to Bitcoin [link] [comments]

[ Bitcoin ] Technical: Taproot: Why Activate?

Topic originally posted in Bitcoin by almkglor [link]
This is a follow-up on https://old.reddit.com/Bitcoin/comments/hqzp14/technical_the_path_to_taproot_activation/
Taproot! Everybody wants it!! But... you might ask yourself: sure, everybody else wants it, but why would I, sovereign Bitcoin HODLer, want it? Surely I can be better than everybody else because I swapped XXX fiat for Bitcoin unlike all those nocoiners?
And it is important for you to know the reasons why you, o sovereign Bitcoiner, would want Taproot activated. After all, your nodes (or the nodes your wallets use, which if you are SPV, you hopefully can pester to your wallet vendoimplementor about) need to be upgraded in order for Taproot activation to actually succeed instead of becoming a hot sticky mess.
First, let's consider some principles of Bitcoin.
I'm sure most of us here would agree that the above are very important principles of Bitcoin and that these are principles we would not be willing to remove. If anything, we would want those principles strengthened (especially the last one, financial privacy, which current Bitcoin is only sporadically strong with: you can get privacy, it just requires effort to do so).
So, how does Taproot affect those principles?

Taproot and Your /Coins

Most HODLers probably HODL their coins in singlesig addresses. Sadly, switching to Taproot would do very little for you (it gives a mild discount at spend time, at the cost of a mild increase in fee at receive time (paid by whoever sends to you, so if it's a self-send from a P2PKH or bech32 address, you pay for this); mostly a wash).
(technical details: a Taproot output is 1 version byte + 32 byte public key, while a P2WPKH (bech32 singlesig) output is 1 version byte + 20 byte public key hash, so the Taproot output spends 12 bytes more; spending from a P2WPKH requires revealing a 32-byte public key later, which is not needed with Taproot, and Taproot signatures are about 9 bytes smaller than P2WPKH signatures, but the 32 bytes plus 9 bytes is divided by 4 because of the witness discount, so it saves about 11 bytes; mostly a wash, it increases blockweight by about 1 virtual byte, 4 weight for each Taproot-output-input, compared to P2WPKH-output-input).
However, as your HODLings grow in value, you might start wondering if multisignature k-of-n setups might be better for the security of your savings. And it is in multisignature that Taproot starts to give benefits!
Taproot switches to using Schnorr signing scheme. Schnorr makes key aggregation -- constructing a single public key from multiple public keys -- almost as trivial as adding numbers together. "Almost" because it involves some fairly advanced math instead of simple boring number adding, but hey when was the last time you added up your grocery list prices by hand huh?
With current P2SH and P2WSH multisignature schemes, if you have a 2-of-3 setup, then to spend, you need to provide two different signatures from two different public keys. With Taproot, you can create, using special moon math, a single public key that represents your 2-of-3 setup. Then you just put two of your devices together, have them communicate to each other (this can be done airgapped, in theory, by sending QR codes: the software to do this is not even being built yet, but that's because Taproot hasn't activated yet!), and they will make a single signature to authorize any spend from your 2-of-3 address. That's 73 witness bytes -- 18.25 virtual bytes -- of signatures you save!
And if you decide that your current setup with 1-of-1 P2PKH / P2WPKH addresses is just fine as-is: well, that's the whole point of a softfork: backwards-compatibility; you can receive from Taproot users just fine, and once your wallet is updated for Taproot-sending support, you can send to Taproot users just fine as well!
(P2WPKH and P2WSH -- SegWit v0 -- addresses start with bc1q; Taproot -- SegWit v1 --- addresses start with bc1p, in case you wanted to know the difference; in bech32 q is 0, p is 1)
Now how about HODLers who keep all, or some, of their coins on custodial services? Well, any custodial service worth its salt would be doing at least 2-of-3, or probably something even bigger, like 11-of-15. So your custodial service, if it switched to using Taproot internally, could save a lot more (imagine an 11-of-15 getting reduced from 11 signatures to just 1!), which --- we can only hope! --- should translate to lower fees and better customer service from your custodial service!
So I think we can say, very accurately, that the Bitcoin principle --- that YOU are in control of your money --- can only be helped by Taproot (if you are doing multisignature), and, because P2PKH and P2WPKH remain validly-usable addresses in a Taproot future, will not be harmed by Taproot. Its benefit to this principle might be small (it mostly only benefits multisignature users) but since it has no drawbacks with this (i.e. singlesig users can continue to use P2WPKH and P2PKH still) this is still a nice, tidy win!
(even singlesig users get a minor benefit, in that multisig users will now reduce their blockchain space footprint, so that fees can be kept low for everybody; so for example even if you have your single set of private keys engraved on titanium plates sealed in an airtight box stored in a safe buried in a desert protected by angry nomads riding giant sandworms because you're the frickin' Kwisatz Haderach, you still gain some benefit from Taproot)
And here's the important part: if P2PKH/P2WPKH is working perfectly fine with you and you decide to never use Taproot yourself, Taproot will not affect you detrimentally. First do no harm!

Taproot and Your Contracts

No one is an island, no one lives alone. Give and you shall receive. You know: by trading with other people, you can gain expertise in some obscure little necessity of the world (and greatly increase your productivity in that little field), and then trade the products of your expertise for necessities other people have created, all of you thereby gaining gains from trade.
So, contracts, which are basically enforceable agreements that facilitate trading with people who you do not personally know and therefore might not trust.
Let's start with a simple example. You want to buy some gewgaws from somebody. But you don't know them personally. The seller wants the money, you want their gewgaws, but because of the lack of trust (you don't know them!! what if they're scammers??) neither of you can benefit from gains from trade.
However, suppose both of you know of some entity that both of you trust. That entity can act as a trusted escrow. The entity provides you security: this enables the trade, allowing both of you to get gains from trade.
In Bitcoin-land, this can be implemented as a 2-of-3 multisignature. The three signatories in the multisgnature would be you, the gewgaw seller, and the escrow. You put the payment for the gewgaws into this 2-of-3 multisignature address.
Now, suppose it turns out neither of you are scammers (whaaaat!). You receive the gewgaws just fine and you're willing to pay up for them. Then you and the gewgaw seller just sign a transaction --- you and the gewgaw seller are 2, sufficient to trigger the 2-of-3 --- that spends from the 2-of-3 address to a singlesig the gewgaw seller wants (or whatever address the gewgaw seller wants).
But suppose some problem arises. The seller gave you gawgews instead of gewgaws. Or you decided to keep the gewgaws but not sign the transaction to release the funds to the seller. In either case, the escrow is notified, and if it can sign with you to refund the funds back to you (if the seller was a scammer) or it can sign with the seller to forward the funds to the seller (if you were a scammer).
Taproot helps with this: like mentioned above, it allows multisignature setups to produce only one signature, reducing blockchain space usage, and thus making contracts --- which require multiple people, by definition, you don't make contracts with yourself --- is made cheaper (which we hope enables more of these setups to happen for more gains from trade for everyone, also, moon and lambos).
(technology-wise, it's easier to make an n-of-n than a k-of-n, making a k-of-n would require a complex setup involving a long ritual with many communication rounds between the n participants, but an n-of-n can be done trivially with some moon math. You can, however, make what is effectively a 2-of-3 by using a three-branch SCRIPT: either 2-of-2 of you and seller, OR 2-of-2 of you and escrow, OR 2-of-2 of escrow and seller. Fortunately, Taproot adds a facility to embed a SCRIPT inside a public key, so you can have a 2-of-2 Taprooted address (between you and seller) with a SCRIPT branch that can instead be spent with 2-of-2 (you + escrow) OR 2-of-2 (seller + escrow), which implements the three-branched SCRIPT above. If neither of you are scammers (hopefully the common case) then you both sign using your keys and never have to contact the escrow, since you are just using the escrow public key without coordinating with them (because n-of-n is trivial but k-of-n requires setup with communication rounds), so in the "best case" where both of you are honest traders, you also get a privacy boost, in that the escrow never learns you have been trading on gewgaws, I mean ewww, gawgews are much better than gewgaws and therefore I now judge you for being a gewgaw enthusiast, you filthy gewgawer).

Taproot and Your Contracts, Part 2: Cryptographic Boogaloo

Now suppose you want to buy some data instead of things. For example, maybe you have some closed-source software in trial mode installed, and want to pay the developer for the full version. You want to pay for an activation code.
This can be done, today, by using an HTLC. The developer tells you the hash of the activation code. You pay to an HTLC, paying out to the developer if it reveals the preimage (the activation code), or refunding the money back to you after a pre-agreed timeout. If the developer claims the funds, it has to reveal the preimage, which is the activation code, and you can now activate your software. If the developer does not claim the funds by the timeout, you get refunded.
And you can do that, with HTLCs, today.
Of course, HTLCs do have problems:
Fortunately, with Schnorr (which is enabled by Taproot), we can now use the Scriptless Script constuction by Andrew Poelstra. This Scriptless Script allows a new construction, the PTLC or Pointlocked Timelocked Contract. Instead of hashes and preimages, just replace "hash" with "point" and "preimage" with "scalar".
Or as you might know them: "point" is really "public key" and "scalar" is really a "private key". What a PTLC does is that, given a particular public key, the pointlocked branch can be spent only if the spender reveals the private key of the given private key to you.
Another nice thing with PTLCs is that they are deniable. What appears onchain is just a single 2-of-2 signature between you and the developemanufacturer. It's like a magic trick. This signature has no special watermarks, it's a perfectly normal signature (the pledge). However, from this signature, plus some datta given to you by the developemanufacturer (known as the adaptor signature) you can derive the private key of a particular public key you both agree on (the turn). Anyone scraping the blockchain will just see signatures that look just like every other signature, and as long as nobody manages to hack you and get a copy of the adaptor signature or the private key, they cannot get the private key behind the public key (point) that the pointlocked branch needs (the prestige).
(Just to be clear, the public key you are getting the private key from, is distinct from the public key that the developemanufacturer will use for its funds. The activation key is different from the developer's onchain Bitcoin key, and it is the activation key whose private key you will be learning, not the developer's/manufacturer's onchain Bitcoin key).
So:
Taproot lets PTLCs exist onchain because they enable Schnorr, which is a requirement of PTLCs / Scriptless Script.
(technology-wise, take note that Scriptless Script works only for the "pointlocked" branch of the contract; you need normal Script, or a pre-signed nLockTimed transaction, for the "timelocked" branch. Since Taproot can embed a script, you can have the Taproot pubkey be a 2-of-2 to implement the Scriptless Script "pointlocked" branch, then have a hidden script that lets you recover the funds with an OP_CHECKLOCKTIMEVERIFY after the timeout if the seller does not claim the funds.)

Quantum Quibbles!

Now if you were really paying attention, you might have noticed this parenthetical:
(technical details: a Taproot output is 1 version byte + 32 byte public key, while a P2WPKH (bech32 singlesig) output is 1 version byte + 20 byte public key hash...)
So wait, Taproot uses raw 32-byte public keys, and not public key hashes? Isn't that more quantum-vulnerable??
Well, in theory yes. In practice, they probably are not.
It's not that hashes can be broken by quantum computes --- they're still not. Instead, you have to look at how you spend from a P2WPKH/P2PKH pay-to-public-key-hash.
When you spend from a P2PKH / P2WPKH, you have to reveal the public key. Then Bitcoin hashes it and checks if this matches with the public-key-hash, and only then actually validates the signature for that public key.
So an unconfirmed transaction, floating in the mempools of nodes globally, will show, in plain sight for everyone to see, your public key.
(public keys should be public, that's why they're called public keys, LOL)
And if quantum computers are fast enough to be of concern, then they are probably fast enough that, in the several minutes to several hours from broadcast to confirmation, they have already cracked the public key that is openly broadcast with your transaction. The owner of the quantum computer can now replace your unconfirmed transaction with one that pays the funds to itself. Even if you did not opt-in RBF, miners are still incentivized to support RBF on RBF-disabled transactions.
So the extra hash is not as significant a protection against quantum computers as you might think. Instead, the extra hash-and-compare needed is just extra validation effort.
Further, if you have ever, in the past, spent from the address, then there exists already a transaction indelibly stored on the blockchain, openly displaying the public key from which quantum computers can derive the private key. So those are still vulnerable to quantum computers.
For the most part, the cryptographers behind Taproot (and Bitcoin Core) are of the opinion that quantum computers capable of cracking Bitcoin pubkeys are unlikely to appear within a decade or two.
So:
For now, the homomorphic and linear properties of elliptic curve cryptography provide a lot of benefits --- particularly the linearity property is what enables Scriptless Script and simple multisignature (i.e. multisignatures that are just 1 signature onchain). So it might be a good idea to take advantage of them now while we are still fairly safe against quantum computers. It seems likely that quantum-safe signature schemes are nonlinear (thus losing these advantages).

Summary

I Wanna Be The Taprooter!

So, do you want to help activate Taproot? Here's what you, mister sovereign Bitcoin HODLer, can do!

But I Hate Taproot!!

That's fine!

Discussions About Taproot Activation

almkglor your post has been copied because one or more comments in this topic have been removed. This copy will preserve unmoderated topic. If you would like to opt-out, please send a message using [this link].
[deleted comment]
[deleted comment]
[deleted comment]
submitted by anticensor_bot to u/anticensor_bot [link] [comments]

TIL in 2011 a user running a modified mining client intentionally underpaid himself 1 satoshi, which is the only time bitcoin have ever truly been destroyed.

In block 124724 you'll find txid 5d80a29b which has a payout of 49.99999999 BTC at a time when the block reward was 50 BTC. A transaction fee of 0.01 BTC was also forfeited. This bitcoin no longer exists anywhere in the network, as opposed to "burned" coins which technically still exist in a wallet which no one can ever access (ex: 1BitcoinEaterAddressDontSendf59kuE).
On bitcointalk user midnightmagic explains a deeper meaning behind this:
I did it as a tribute to our missing Satoshi: we are missing Satoshi, and now the blockchain is missing 1 Satoshi too, for all time.
EDIT: Users have pointed out in the comments that this isn't actually the only time coins have been destroyed, there are actually several different ways coins have been destroyed in the past. sumBTC also points out that the satoshi wasn't destroyed-- it was never created in the first place.
Another interesting way to destroy coins is by creating a duplicate transaction. This is again done with a modified client. For example see block 91722 and block 91880. They both contain txid e3bf3d07. The newer transaction essentially overwrites the old transaction, destroying the previous one and the associated coins. This issue was briefly discussed on Github #612 and determined to not be a big deal. In 2012 they realized that duplicated transactions could be used as part of an attack on the network so this was fixed and is no longer possible.
Provably burning coins was actually added as a feature in 2014 via OP_RETURN. Transactions marked with this opcode MAY be pruned from a client's unspent transaction database. Whether or not these coins still exist is a matter of opinion.
Finally, at least 1,000 blocks forfeited transactions fees due to a software bug. Forfeited transaction fees are lost forever and are unaccounted for in any wallet.
Further reading: https://bitcoin.stackexchange.com/questions/30862/how-much-bitcoin-is-lost-on-average/30864#30864 https://bitcoin.stackexchange.com/questions/38994/will-there-be-21-million-bitcoins-eventually/38998#38998
submitted by NewLlama to Bitcoin [link] [comments]

Let's discuss some of the issues with Nano

Let's talk about some of Nano's biggest issues. I also made a video about this topic, available here: https://youtu.be/d9yb9ifurbg.
00:12 Spam
Issues
Potential Mitigations & Outstanding Issues
01:58 Privacy
Issues
  • Nano has no privacy. It is pseudonymous (like Bitcoin), not anonymous.
Potential Mitigations & Outstanding Issues & Outstanding Issues*
  • Second layer solutions like mixers can help, but some argue that isn't enough privacy.
  • The current protocol design + the computational overhead of privacy does not allow Nano to implement first layer privacy without compromising it's other features (fast, feeless, and scalable transactions).
02:56 Decentralization
Issues
  • Nano is currently not as decentralized as it could be. ~25% of the voting weight is held by Binance.
  • Users must choose representatives, and users don't always choose the best ones (or never choose).
Potential Mitigations & Outstanding Issues
  • Currently 4 unrelated parties (who all have a verifiable interest in keeping the network running) would have to work together to attack the network
  • Unlike Bitcoin, there is no mining or fees in Nano. This means that there is not a strong incentive for emergent centralization from profit maximization and economies of scale. We've seen this firsthand, as Nano's decentralization has increased over time.
  • Nano representative percentages are not that far off from Bitcoin mining pool percentages.
  • In Nano, voting weight can be remotely re-delegated to anyone at any time. This differs from Bitcoin, where consensus is controlled by miners and requires significant hardware investment.
  • The cost of a 51% attack scales with the market cap of Nano.
06:49 Marketing & adoption
Issues
  • The best technology doesn't always win. If no one knows about or uses Nano, it will die.
Potential Mitigations & Outstanding Issues
  • I would argue that the best technology typically does win, but it needs to be best in every way (price, speed, accessbility, etc). Nano is currently in a good place if you agree with that argument.
  • Bitcoin started small, and didn't spend money on marketing. It takes time to build a community.
  • The developers have said they will market more once the protocol is where they want it to be (v20 or v21?).
  • Community marketing initiatives have started to form organically (e.g. Twitter campaigns, YouTube ads, etc).
  • Marketing and adoption is a very difficult problem to solve, especially when you don't have first mover advantage or consistent cashflow.
08:07 Small developer fund
Issues
  • The developer fund only has 3 million NANO left (~$4MM), what happens after that?
Potential Mitigations & Outstanding Issues
  • The goal for Nano is to be an Internet RFC like TCP/IP or SMTP - development naturally slows down when the protocol is in a good place.
  • Nano development is completely open source, so anyone can participate. Multiple developers are now familiar with the Nano protocol.
  • Businesses and whales that benefit from Nano (exchanges, remittances, merchant services, etc) are incentivized to keep the protocol developed and running.
  • The developer fund was only ~5% of the supply - compare that to some of the other major cryptocurrencies.
10:08 Node incentives
Issues
  • There are no transaction fees, why would people run nodes to keep the network running?
Potential Mitigations & Outstanding Issues
  • The cost of consensus is so low in Nano that the benefits of the network itself are the incentive: decentralized money with 0 transaction fees that can be sent anywhere in the world nearly instantly. Similar to TCP/IP, email servers, and http servers. Just like Bitcoin full nodes.
  • Paying $50-$100 a month for a high-end node is a lot cheaper for merchants than paying 1-3% in total sales.
  • Businesses and whales that benefit from Nano (exchanges, remittances, merchant services, etc) are incentivized to keep the protocol developed and running.
11:58 No smart contracts
Issues
  • Nano doesn't support smart contracts.
Potential Mitigations & Outstanding Issues
  • Nano's sole goal is to be the most efficient peer-to-peer value transfer protocol possible. Adding smart contracts makes keeping Nano feeless, fast, and decentralized much more difficult.
  • Other solutions (e.g. Ethereum) exist for creating and enforcing smart contracts.
  • Code can still interact with Nano, but not on the first layer in a decentralized matter.
  • Real world smart contract adoption and usage is pretty limited at the moment, but that might not always be the case.
13:20 Price stability
Issues
  • Why would anyone accept or spend Nano if the price fluctuates so much?
  • Why wouldn't people just use a stablecoin version of Nano for sending and receiving money?
Potential Mitigations & Outstanding Issues
  • With good fiat gateways (stable, low fees, etc), you can always buy back the fiat equivalent of what you've spent.
  • The hope is that with enough adoption, people and businesses will eventually skip the fiat conversion and use Nano directly.
  • Because Nano is so fast, volatility is less of an issue. Transactions are confirmed in <10 seconds, and prices change less in that timeframe (vs 10 minutes to hours for Bitcoin).
  • Stablecoins reintroduce trust. Stable against what? Who controls the supply, and how do you get people to adopt them? What happens if the assets they're stable against fail? Nano is pure supply and demand.
  • With worldwide adoption, the market capitalization of Nano would be in the trillions. If that happens, even millions of dollars won't move the price significantly.
15:06 Deflation
Issues
  • Nano's current supply == max supply. Why would people spend Nano today if it could be worth more tomorrow?
  • What happens to principal representatives and voting weight as private keys are lost? How do you know keys are lost?
Potential Mitigations & Outstanding Issues
  • Nano is extremely divisible. 1 NANO is 1030 raw. Since there are no transaction fees, smaller and smaller amounts of Nano could be used to transact, even if the market cap reaches trillions.
  • People will always buy things they need (food, housing, etc).
  • I'm not sure what the plan is to adjust for lost keys. Probably requires more discussion.
Long-term Scalability
Issue
  • Current node software and hardware cannot handle thousands of TPS (low-end nodes fall behind at even 50 TPS).
  • The more representatives that exist, the more vote traffic is required (network bandwidth).
  • Low-end nodes currently slow down the network significantly. Principal representatives waste their resources constantly bootstrapping these weak nodes during network saturation.
Potential Mitigations & Outstanding Issues
  • Even as is, Nano can comfortably handle 50 TPS average - which is roughly the amount of transactions per day PayPal was doing in 2011 with nearly 100 million users.
  • Network bandwidth increases 50% a year.
  • There are some discussions of prioritizing bootstrapping by vote weight to limit the impact of weak nodes.
  • Since Nano uses an account balance system, pruning could drastically reduce storage requirements. You only need current state to keep the network running, not the full transaction history.
  • In the future, vote stapling could drastically reduce bandwidth usage by collecting all representative signatures up front and then only sharing that single aggregate signature.
  • Nano has no artificial protocol-based limits (e.g. block sizes or block times). It scales with hardware.
Obviously there is still a lot of work to be done in some areas, but overall I think Nano is a good place. For people that aren't Nano fans, what are your biggest concerns?
submitted by Qwahzi to CryptoCurrency [link] [comments]

Why use your own full node? Answered by Pieter Wuille

One of Bitcoin's strengths - the most important in my opinion even - is the low degree of trust you need in others.
If you use a full node for your incoming transactions, you know that there was no cheating anytime in the history of your coins:
... with one exception: because there is a need to pick a winner in presence of multiple competing valid versions of the ledger, (a majority of) miners have the authority to pick the version of the block chain that wins. This means their power is limited to choosing the order in which otherwise valid transactions occur, up to and including the right to delay them indefinitely. But they cannot make invalid transaction look valid to a full node.
If you are not running a full node, the amount of trust you're placing in others increases.
SPV nodes (such as some mobile clients, and Multibit) place a blind trust in the majority of miners, without checking validity of the blockchain they produce. It still requires a majority of miners to mislead an SPV node, but they can make it believe anything (including "You received 10000000 BTC!"). The reason why this does not happen is because full nodes would not accept such blocks, and assuming a large portion of the ecosystem does rely on full nodes, miners who do this would not see their blocks accepted by the larger economy, resulting in them wasting money.
Centralized services (most webwallets) make the user trust whatever the site says. They can claim anything.
So I hope you now see the importance of full nodes in this model. If you run a full node somewhere on the network, and nobody looks at the transactions it validates, it is indeed contributing to the network, but it is not helping with the reduction of trust.
Look at it another way: if only a few large players in the Bitcoin ecosystem were running full nodes, it only requires a malicious intent, or an attack/threat against them, to change the system's rules, as nobody else is validating.
Doing transactions in the Bitcoin ecosystem helps the Bitcoin currency. Running a full node helps the network. Using a full node helps you and the ecosystem reduce the need for trust.
https://www.reddit.com/BitcoinBeginners/comments/3eq3y7/full_node_question/ctk4lnd/
Adding to that answer myself:
Running (and using) your own full node gives you the benefit of increased privacy, because you don't leak information about your UTXOs to the default node of your wallet, which can link your UTXOs together, perhaps even link them to your real world identity.
There are different ways how to set up a node (from simply installing the Bitcoin Core software on your computer to getting a plug'n'play solution such as Casa or Nodl), but to connect a (hardware) wallet to it is a little more tricky for now.
One of the projects I frequently recommend myself is https://stadicus.github.io/RaspiBolt/. It's somewhat cheap (~$150 for hardware, as compared to other plug'n'play nodes which are around $300) but can run 24/7 and includes guides how to set up Tor on the device, and how to use your hardware wallet with the node.
submitted by TheGreatMuffin to Bitcoin [link] [comments]

What are Nano's biggest issues? Let's talk about it!

Let's talk about some of Nano's biggest issues. I also made a video about this topic, available here: https://youtu.be/d9yb9ifurbg.
00:12 Spam
Issues
Potential Mitigations & Outstanding Issues
01:58 Privacy
Issues
  • Nano has no privacy. It is pseudonymous (like Bitcoin), not anonymous.
Potential Mitigations & Outstanding Issues & Outstanding Issues*
  • Second layer solutions like mixers can help, but some argue that isn't enough privacy.
  • The current protocol design + the computational overhead of privacy does not allow Nano to implement first layer privacy without compromising it's other features (fast, feeless, and scalable transactions).
02:56 Decentralization
Issues
  • Nano is currently not as decentralized as it could be. ~25% of the voting weight is held by Binance.
  • Users must choose representatives, and users don't always choose the best ones (or never choose).
Potential Mitigations & Outstanding Issues
  • Currently 4 unrelated parties (who all have a verifiable interest in keeping the network running) would have to work together to attack the network
  • Unlike Bitcoin, there is no mining or fees in Nano. This means that there is not a strong incentive for emergent centralization from profit maximization and economies of scale. We've seen this firsthand, as Nano's decentralization has increased over time.
  • Nano representative percentages are not that far off from Bitcoin mining pool percentages.
  • In Nano, voting weight can be remotely re-delegated to anyone at any time. This differs from Bitcoin, where consensus is controlled by miners and requires significant hardware investment.
  • The cost of a 51% attack scales with the market cap of Nano.
06:49 Marketing & adoption
Issues
  • The best technology doesn't always win. If no one knows about or uses Nano, it will die.
Potential Mitigations & Outstanding Issues
  • I would argue that the best technology typically does win, but it needs to be best in every way (price, speed, accessbility, etc). Nano is currently in a good place if you agree with that argument.
  • Bitcoin started small, and didn't spend money on marketing. It takes time to build a community.
  • The developers have said they will market more once the protocol is where they want it to be (v20 or v21?).
  • Community marketing initiatives have started to form organically (e.g. Twitter campaigns, YouTube ads, etc).
  • Marketing and adoption is a very difficult problem to solve, especially when you don't have first mover advantage or consistent cashflow.
08:07 Small developer fund
Issues
  • The developer fund only has 3 million NANO left (~$4MM), what happens after that?
Potential Mitigations & Outstanding Issues
  • The goal for Nano is to be an Internet RFC like TCP/IP or SMTP - development naturally slows down when the protocol is in a good place.
  • Nano development is completely open source, so anyone can participate. Multiple developers are now familiar with the Nano protocol.
  • Businesses and whales that benefit from Nano (exchanges, remittances, merchant services, etc) are incentivized to keep the protocol developed and running.
  • The developer fund was only ~5% of the supply - compare that to some of the other major cryptocurrencies.
10:08 Node incentives
Issues
  • There are no transaction fees, why would people run nodes to keep the network running?
Potential Mitigations & Outstanding Issues
  • The cost of consensus is so low in Nano that the benefits of the network itself are the incentive: decentralized money with 0 transaction fees that can be sent anywhere in the world nearly instantly.
  • Paying $50-$100 a month for a high-end node is a lot cheaper for merchants than paying 1-3% in total sales.
  • Businesses and whales that benefit from Nano (exchanges, remittances, merchant services, etc) are incentivized to keep the protocol developed and running.
11:58 No smart contracts
Issues
  • Nano doesn't support smart contracts.
Potential Mitigations & Outstanding Issues
  • Nano's sole goal is to be the most efficient peer-to-peer value transfer protocol possible. Adding smart contracts makes keeping Nano feeless, fast, and decentralized much more difficult.
  • Other solutions (e.g. Ethereum) exist for creating and enforcing smart contracts.
  • Code can still interact with Nano, but not on the first layer in a decentralized matter.
  • Real world smart contract adoption and usage is pretty limited at the moment, but that might not always be the case.
13:20 Price stability
Issues
  • Why would anyone accept or spend Nano if the price fluctuates so much?
  • Why wouldn't people just use a stablecoin version of Nano for sending and receiving money?
Potential Mitigations & Outstanding Issues
  • With good fiat gateways (stable, low fees, etc), you can always buy back the fiat equivalent of what you've spent.
  • The hope is that with enough adoption, people and businesses will eventually skip the fiat conversion and use Nano directly.
  • Because Nano is so fast, volatility is less of an issue. Transactions are confirmed in <10 seconds, and prices change less in that timeframe (vs 10 minutes to hours for Bitcoin).
  • Stablecoins reintroduce trust. Stable against what? Who controls the supply, and how do you get people to adopt them? What happens if the assets they're stable against fail? Nano is pure supply and demand.
  • With worldwide adoption, the market capitalization of Nano would be in the trillions. If that happens, even millions of dollars won't move the price significantly.
15:06 Deflation
Issues
  • Nano's current supply == max supply. Why would people spend Nano today if it could be worth more tomorrow?
  • What happens to principal representatives and voting weight as private keys are lost? How do you know keys are lost?
Potential Mitigations & Outstanding Issues
  • Nano is extremely divisible. 1 NANO is 1030 raw. Since there are no transaction fees, smaller and smaller amounts of Nano could be used to transact, even if the market cap reaches trillions.
  • People will always buy things they need (food, housing, etc).
  • I'm not sure what the plan is to adjust for lost keys. Probably requires more discussion.
Long-term Scalability
Issue
  • Current node software and hardware cannot handle thousands of TPS (low-end nodes fall behind at even 50 TPS).
  • The more representatives that exist, the more vote traffic is required (network bandwidth).
  • Low-end nodes currently slow down the network significantly. Principal representatives waste their resources constantly bootstrapping these weak nodes during network saturation.
Potential Mitigations & Outstanding Issues
  • Even as is, Nano can comfortably handle 50 TPS average - which is roughly the amount of transactions per day PayPal was doing in 2011 with nearly 100 million users.
  • Network bandwidth increases 50% a year.
  • There are some discussions of prioritizing bootstrapping by vote weight to limit the impact of weak nodes.
  • Since Nano uses an account balance system, pruning could drastically reduce storage requirements. You only need current state to keep the network running, not the full transaction history.
  • In the future, vote stapling could drastically reduce bandwidth usage by collecting all representative signatures up front and then only sharing that single aggregate signature.
  • Nano has no artificial protocol-based limits (e.g. block sizes or block times). It scales with hardware.
submitted by Qwahzi to nanocurrency [link] [comments]

Groestlcoin 6th Anniversary Release

Introduction

Dear Groestlers, it goes without saying that 2020 has been a difficult time for millions of people worldwide. The groestlcoin team would like to take this opportunity to wish everyone our best to everyone coping with the direct and indirect effects of COVID-19. Let it bring out the best in us all and show that collectively, we can conquer anything.
The centralised banks and our national governments are facing unprecedented times with interest rates worldwide dropping to record lows in places. Rest assured that this can only strengthen the fundamentals of all decentralised cryptocurrencies and the vision that was seeded with Satoshi's Bitcoin whitepaper over 10 years ago. Despite everything that has been thrown at us this year, the show must go on and the team will still progress and advance to continue the momentum that we have developed over the past 6 years.
In addition to this, we'd like to remind you all that this is Groestlcoin's 6th Birthday release! In terms of price there have been some crazy highs and lows over the years (with highs of around $2.60 and lows of $0.000077!), but in terms of value– Groestlcoin just keeps getting more valuable! In these uncertain times, one thing remains clear – Groestlcoin will keep going and keep innovating regardless. On with what has been worked on and completed over the past few months.

UPDATED - Groestlcoin Core 2.18.2

This is a major release of Groestlcoin Core with many protocol level improvements and code optimizations, featuring the technical equivalent of Bitcoin v0.18.2 but with Groestlcoin-specific patches. On a general level, most of what is new is a new 'Groestlcoin-wallet' tool which is now distributed alongside Groestlcoin Core's other executables.
NOTE: The 'Account' API has been removed from this version which was typically used in some tip bots. Please ensure you check the release notes from 2.17.2 for details on replacing this functionality.

How to Upgrade?

Windows
If you are running an older version, shut it down. Wait until it has completely shut down (which might take a few minutes for older versions), then run the installer.
OSX
If you are running an older version, shut it down. Wait until it has completely shut down (which might take a few minutes for older versions), run the dmg and drag Groestlcoin Core to Applications.
Ubuntu
http://groestlcoin.org/forum/index.php?topic=441.0

Other Linux

http://groestlcoin.org/forum/index.php?topic=97.0

Download

Download the Windows Installer (64 bit) here
Download the Windows Installer (32 bit) here
Download the Windows binaries (64 bit) here
Download the Windows binaries (32 bit) here
Download the OSX Installer here
Download the OSX binaries here
Download the Linux binaries (64 bit) here
Download the Linux binaries (32 bit) here
Download the ARM Linux binaries (64 bit) here
Download the ARM Linux binaries (32 bit) here

Source

ALL NEW - Groestlcoin Moonshine iOS/Android Wallet

Built with React Native, Moonshine utilizes Electrum-GRS's JSON-RPC methods to interact with the Groestlcoin network.
GRS Moonshine's intended use is as a hot wallet. Meaning, your keys are only as safe as the device you install this wallet on. As with any hot wallet, please ensure that you keep only a small, responsible amount of Groestlcoin on it at any given time.

Features

Download

iOS
Android

Source

ALL NEW! – HODL GRS Android Wallet

HODL GRS connects directly to the Groestlcoin network using SPV mode and doesn't rely on servers that can be hacked or disabled.
HODL GRS utilizes AES hardware encryption, app sandboxing, and the latest security features to protect users from malware, browser security holes, and even physical theft. Private keys are stored only in the secure enclave of the user's phone, inaccessible to anyone other than the user.
Simplicity and ease-of-use is the core design principle of HODL GRS. A simple recovery phrase (which we call a Backup Recovery Key) is all that is needed to restore the user's wallet if they ever lose or replace their device. HODL GRS is deterministic, which means the user's balance and transaction history can be recovered just from the backup recovery key.

Features

Download

Main Release (Main Net)
Testnet Release

Source

ALL NEW! – GroestlcoinSeed Savior

Groestlcoin Seed Savior is a tool for recovering BIP39 seed phrases.
This tool is meant to help users with recovering a slightly incorrect Groestlcoin mnemonic phrase (AKA backup or seed). You can enter an existing BIP39 mnemonic and get derived addresses in various formats.
To find out if one of the suggested addresses is the right one, you can click on the suggested address to check the address' transaction history on a block explorer.

Features

Live Version (Not Recommended)

https://www.groestlcoin.org/recovery/

Download

https://github.com/Groestlcoin/mnemonic-recovery/archive/master.zip

Source

ALL NEW! – Vanity Search Vanity Address Generator

NOTE: NVidia GPU or any CPU only. AMD graphics cards will not work with this address generator.
VanitySearch is a command-line Segwit-capable vanity Groestlcoin address generator. Add unique flair when you tell people to send Groestlcoin. Alternatively, VanitySearch can be used to generate random addresses offline.
If you're tired of the random, cryptic addresses generated by regular groestlcoin clients, then VanitySearch is the right choice for you to create a more personalized address.
VanitySearch is a groestlcoin address prefix finder. If you want to generate safe private keys, use the -s option to enter your passphrase which will be used for generating a base key as for BIP38 standard (VanitySearch.exe -s "My PassPhrase" FXPref). You can also use VanitySearch.exe -ps "My PassPhrase" which will add a crypto secure seed to your passphrase.
VanitySearch may not compute a good grid size for your GPU, so try different values using -g option in order to get the best performances. If you want to use GPUs and CPUs together, you may have best performances by keeping one CPU core for handling GPU(s)/CPU exchanges (use -t option to set the number of CPU threads).

Features

Usage

https://github.com/Groestlcoin/VanitySearch#usage

Download

Source

ALL NEW! – Groestlcoin EasyVanity 2020

Groestlcoin EasyVanity 2020 is a windows app built from the ground-up and makes it easier than ever before to create your very own bespoke bech32 address(es) when whilst not connected to the internet.
If you're tired of the random, cryptic bech32 addresses generated by regular Groestlcoin clients, then Groestlcoin EasyVanity2020 is the right choice for you to create a more personalised bech32 address. This 2020 version uses the new VanitySearch to generate not only legacy addresses (F prefix) but also Bech32 addresses (grs1 prefix).

Features

Download

Source

Remastered! – Groestlcoin WPF Desktop Wallet (v2.19.0.18)

Groestlcoin WPF is an alternative full node client with optional lightweight 'thin-client' mode based on WPF. Windows Presentation Foundation (WPF) is one of Microsoft's latest approaches to a GUI framework, used with the .NET framework. Its main advantages over the original Groestlcoin client include support for exporting blockchain.dat and including a lite wallet mode.
This wallet was previously deprecated but has been brought back to life with modern standards.

Features

Remastered Improvements

Download

Source

ALL NEW! – BIP39 Key Tool

Groestlcoin BIP39 Key Tool is a GUI interface for generating Groestlcoin public and private keys. It is a standalone tool which can be used offline.

Features

Download

Windows
Linux :
 pip3 install -r requirements.txt python3 bip39\_gui.py 

Source

ALL NEW! – Electrum Personal Server

Groestlcoin Electrum Personal Server aims to make using Electrum Groestlcoin wallet more secure and more private. It makes it easy to connect your Electrum-GRS wallet to your own full node.
It is an implementation of the Electrum-grs server protocol which fulfils the specific need of using the Electrum-grs wallet backed by a full node, but without the heavyweight server backend, for a single user. It allows the user to benefit from all Groestlcoin Core's resource-saving features like pruning, blocks only and disabled txindex. All Electrum-GRS's feature-richness like hardware wallet integration, multi-signature wallets, offline signing, seed recovery phrases, coin control and so on can still be used, but connected only to the user's own full node.
Full node wallets are important in Groestlcoin because they are a big part of what makes the system be trust-less. No longer do people have to trust a financial institution like a bank or PayPal, they can run software on their own computers. If Groestlcoin is digital gold, then a full node wallet is your own personal goldsmith who checks for you that received payments are genuine.
Full node wallets are also important for privacy. Using Electrum-GRS under default configuration requires it to send (hashes of) all your Groestlcoin addresses to some server. That server can then easily spy on your transactions. Full node wallets like Groestlcoin Electrum Personal Server would download the entire blockchain and scan it for the user's own addresses, and therefore don't reveal to anyone else which Groestlcoin addresses they are interested in.
Groestlcoin Electrum Personal Server can also broadcast transactions through Tor which improves privacy by resisting traffic analysis for broadcasted transactions which can link the IP address of the user to the transaction. If enabled this would happen transparently whenever the user simply clicks "Send" on a transaction in Electrum-grs wallet.
Note: Currently Groestlcoin Electrum Personal Server can only accept one connection at a time.

Features

Download

Windows
Linux / OSX (Instructions)

Source

UPDATED – Android Wallet 7.38.1 - Main Net + Test Net

The app allows you to send and receive Groestlcoin on your device using QR codes and URI links.
When using this app, please back up your wallet and email them to yourself! This will save your wallet in a password protected file. Then your coins can be retrieved even if you lose your phone.

Changes

Download

Main Net
Main Net (FDroid)
Test Net

Source

UPDATED – Groestlcoin Sentinel 3.5.06 (Android)

Groestlcoin Sentinel is a great solution for anyone who wants the convenience and utility of a hot wallet for receiving payments directly into their cold storage (or hardware wallets).
Sentinel accepts XPUB's, YPUB'S, ZPUB's and individual Groestlcoin address. Once added you will be able to view balances, view transactions, and (in the case of XPUB's, YPUB's and ZPUB's) deterministically generate addresses for that wallet.
Groestlcoin Sentinel is a fork of Groestlcoin Samourai Wallet with all spending and transaction building code removed.

Changes

Download

Source

UPDATED – P2Pool Test Net

Changes

Download

Pre-Hosted Testnet P2Pool is available via http://testp2pool.groestlcoin.org:21330/static/

Source

submitted by Yokomoko_Saleen to groestlcoin [link] [comments]

Technical: A Brief History of Payment Channels: from Satoshi to Lightning Network

Who cares about political tweets from some random country's president when payment channels are a much more interesting and are actually capable of carrying value?
So let's have a short history of various payment channel techs!

Generation 0: Satoshi's Broken nSequence Channels

Because Satoshi's Vision included payment channels, except his implementation sucked so hard we had to go fix it and added RBF as a by-product.
Originally, the plan for nSequence was that mempools would replace any transaction spending certain inputs with another transaction spending the same inputs, but only if the nSequence field of the replacement was larger.
Since 0xFFFFFFFF was the highest value that nSequence could get, this would mark a transaction as "final" and not replaceable on the mempool anymore.
In fact, this "nSequence channel" I will describe is the reason why we have this weird rule about nLockTime and nSequence. nLockTime actually only works if nSequence is not 0xFFFFFFFF i.e. final. If nSequence is 0xFFFFFFFF then nLockTime is ignored, because this if the "final" version of the transaction.
So what you'd do would be something like this:
  1. You go to a bar and promise the bartender to pay by the time the bar closes. Because this is the Bitcoin universe, time is measured in blockheight, so the closing time of the bar is indicated as some future blockheight.
  2. For your first drink, you'd make a transaction paying to the bartender for that drink, paying from some coins you have. The transaction has an nLockTime equal to the closing time of the bar, and a starting nSequence of 0. You hand over the transaction and the bartender hands you your drink.
  3. For your succeeding drink, you'd remake the same transaction, adding the payment for that drink to the transaction output that goes to the bartender (so that output keeps getting larger, by the amount of payment), and having an nSequence that is one higher than the previous one.
  4. Eventually you have to stop drinking. It comes down to one of two possibilities:
    • You drink until the bar closes. Since it is now the nLockTime indicated in the transaction, the bartender is able to broadcast the latest transaction and tells the bouncers to kick you out of the bar.
    • You wisely consider the state of your liver. So you re-sign the last transaction with a "final" nSequence of 0xFFFFFFFF i.e. the maximum possible value it can have. This allows the bartender to get his or her funds immediately (nLockTime is ignored if nSequence is 0xFFFFFFFF), so he or she tells the bouncers to let you out of the bar.
Now that of course is a payment channel. Individual payments (purchases of alcohol, so I guess buying coffee is not in scope for payment channels). Closing is done by creating a "final" transaction that is the sum of the individual payments. Sure there's no routing and channels are unidirectional and channels have a maximum lifetime but give Satoshi a break, he was also busy inventing Bitcoin at the time.
Now if you noticed I called this kind of payment channel "broken". This is because the mempool rules are not consensus rules, and cannot be validated (nothing about the mempool can be validated onchain: I sigh every time somebody proposes "let's make block size dependent on mempool size", mempool state cannot be validated by onchain data). Fullnodes can't see all of the transactions you signed, and then validate that the final one with the maximum nSequence is the one that actually is used onchain. So you can do the below:
  1. Become friends with Jihan Wu, because he owns >51% of the mining hashrate (he totally reorged Bitcoin to reverse the Binance hack right?).
  2. Slip Jihan Wu some of the more interesting drinks you're ordering as an incentive to cooperate with you. So say you end up ordering 100 drinks, you split it with Jihan Wu and give him 50 of the drinks.
  3. When the bar closes, Jihan Wu quickly calls his mining rig and tells them to mine the version of your transaction with nSequence 0. You know, that first one where you pay for only one drink.
  4. Because fullnodes cannot validate nSequence, they'll accept even the nSequence=0 version and confirm it, immutably adding you paying for a single alcoholic drink to the blockchain.
  5. The bartender, pissed at being cheated, takes out a shotgun from under the bar and shoots at you and Jihan Wu.
  6. Jihan Wu uses his mystical chi powers (actually the combined exhaust from all of his mining rigs) to slow down the shotgun pellets, making them hit you as softly as petals drifting in the wind.
  7. The bartender mutters some words, clothes ripping apart as he or she (hard to believe it could be a she but hey) turns into a bear, ready to maul you for cheating him or her of the payment for all the 100 drinks you ordered from him or her.
  8. Steely-eyed, you stand in front of the bartender-turned-bear, daring him to touch you. You've watched Revenant, you know Leonardo di Caprio could survive a bear mauling, and if some posh actor can survive that, you know you can too. You make a pose. "Drunken troll logic attack!"
  9. I think I got sidetracked here.
Lessons learned?

Spilman Channels

Incentive-compatible time-limited unidirectional channel; or, Satoshi's Vision, Fixed (if transaction malleability hadn't been a problem, that is).
Now, we know the bartender will turn into a bear and maul you if you try to cheat the payment channel, and now that we've revealed you're good friends with Jihan Wu, the bartender will no longer accept a payment channel scheme that lets one you cooperate with a miner to cheat the bartender.
Fortunately, Jeremy Spilman proposed a better way that would not let you cheat the bartender.
First, you and the bartender perform this ritual:
  1. You get some funds and create a transaction that pays to a 2-of-2 multisig between you and the bartender. You don't broadcast this yet: you just sign it and get its txid.
  2. You create another transaction that spends the above transaction. This transaction (the "backoff") has an nLockTime equal to the closing time of the bar, plus one block. You sign it and give this backoff transaction (but not the above transaction) to the bartender.
  3. The bartender signs the backoff and gives it back to you. It is now valid since it's spending a 2-of-2 of you and the bartender, and both of you have signed the backoff transaction.
  4. Now you broadcast the first transaction onchain. You and the bartender wait for it to be deeply confirmed, then you can start ordering.
The above is probably vaguely familiar to LN users. It's the funding process of payment channels! The first transaction, the one that pays to a 2-of-2 multisig, is the funding transaction that backs the payment channel funds.
So now you start ordering in this way:
  1. For your first drink, you create a transaction spending the funding transaction output and sending the price of the drink to the bartender, with the rest returning to you.
  2. You sign the transaction and pass it to the bartender, who serves your first drink.
  3. For your succeeding drinks, you recreate the same transaction, adding the price of the new drink to the sum that goes to the bartender and reducing the money returned to you. You sign the transaction and give it to the bartender, who serves you your next drink.
  4. At the end:
    • If the bar closing time is reached, the bartender signs the latest transaction, completing the needed 2-of-2 signatures and broadcasting this to the Bitcoin network. Since the backoff transaction is the closing time + 1, it can't get used at closing time.
    • If you decide you want to leave early because your liver is crying, you just tell the bartender to go ahead and close the channel (which the bartender can do at any time by just signing and broadcasting the latest transaction: the bartender won't do that because he or she is hoping you'll stay and drink more).
    • If you ended up just hanging around the bar and never ordering, then at closing time + 1 you broadcast the backoff transaction and get your funds back in full.
Now, even if you pass 50 drinks to Jihan Wu, you can't give him the first transaction (the one which pays for only one drink) and ask him to mine it: it's spending a 2-of-2 and the copy you have only contains your own signature. You need the bartender's signature to make it valid, but he or she sure as hell isn't going to cooperate in something that would lose him or her money, so a signature from the bartender validating old state where he or she gets paid less isn't going to happen.
So, problem solved, right? Right? Okay, let's try it. So you get your funds, put them in a funding tx, get the backoff tx, confirm the funding tx...
Once the funding transaction confirms deeply, the bartender laughs uproariously. He or she summons the bouncers, who surround you menacingly.
"I'm refusing service to you," the bartender says.
"Fine," you say. "I was leaving anyway;" You smirk. "I'll get back my money with the backoff transaction, and posting about your poor service on reddit so you get negative karma, so there!"
"Not so fast," the bartender says. His or her voice chills your bones. It looks like your exploitation of the Satoshi nSequence payment channel is still fresh in his or her mind. "Look at the txid of the funding transaction that got confirmed."
"What about it?" you ask nonchalantly, as you flip open your desktop computer and open a reputable blockchain explorer.
What you see shocks you.
"What the --- the txid is different! You--- you changed my signature?? But how? I put the only copy of my private key in a sealed envelope in a cast-iron box inside a safe buried in the Gobi desert protected by a clan of nomads who have dedicated their lives and their childrens' lives to keeping my private key safe in perpetuity!"
"Didn't you know?" the bartender asks. "The components of the signature are just very large numbers. The sign of one of the signature components can be changed, from positive to negative, or negative to positive, and the signature will remain valid. Anyone can do that, even if they don't know the private key. But because Bitcoin includes the signatures in the transaction when it's generating the txid, this little change also changes the txid." He or she chuckles. "They say they'll fix it by separating the signatures from the transaction body. They're saying that these kinds of signature malleability won't affect transaction ids anymore after they do this, but I bet I can get my good friend Jihan Wu to delay this 'SepSig' plan for a good while yet. Friendly guy, this Jihan Wu, it turns out all I had to do was slip him 51 drinks and he was willing to mine a tx with the signature signs flipped." His or her grin widens. "I'm afraid your backoff transaction won't work anymore, since it spends a txid that is not existent and will never be confirmed. So here's the deal. You pay me 99% of the funds in the funding transaction, in exchange for me signing the transaction that spends with the txid that you see onchain. Refuse, and you lose 100% of the funds and every other HODLer, including me, benefits from the reduction in coin supply. Accept, and you get to keep 1%. I lose nothing if you refuse, so I won't care if you do, but consider the difference of getting zilch vs. getting 1% of your funds." His or her eyes glow. "GENUFLECT RIGHT NOW."
Lesson learned?

CLTV-protected Spilman Channels

Using CLTV for the backoff branch.
This variation is simply Spilman channels, but with the backoff transaction replaced with a backoff branch in the SCRIPT you pay to. It only became possible after OP_CHECKLOCKTIMEVERIFY (CLTV) was enabled in 2015.
Now as we saw in the Spilman Channels discussion, transaction malleability means that any pre-signed offchain transaction can easily be invalidated by flipping the sign of the signature of the funding transaction while the funding transaction is not yet confirmed.
This can be avoided by simply putting any special requirements into an explicit branch of the Bitcoin SCRIPT. Now, the backoff branch is supposed to create a maximum lifetime for the payment channel, and prior to the introduction of OP_CHECKLOCKTIMEVERIFY this could only be done by having a pre-signed nLockTime transaction.
With CLTV, however, we can now make the branches explicit in the SCRIPT that the funding transaction pays to.
Instead of paying to a 2-of-2 in order to set up the funding transaction, you pay to a SCRIPT which is basically "2-of-2, OR this singlesig after a specified lock time".
With this, there is no backoff transaction that is pre-signed and which refers to a specific txid. Instead, you can create the backoff transaction later, using whatever txid the funding transaction ends up being confirmed under. Since the funding transaction is immutable once confirmed, it is no longer possible to change the txid afterwards.

Todd Micropayment Networks

The old hub-spoke model (that isn't how LN today actually works).
One of the more direct predecessors of the Lightning Network was the hub-spoke model discussed by Peter Todd. In this model, instead of payers directly having channels to payees, payers and payees connect to a central hub server. This allows any payer to pay any payee, using the same channel for every payee on the hub. Similarly, this allows any payee to receive from any payer, using the same channel.
Remember from the above Spilman example? When you open a channel to the bartender, you have to wait around for the funding tx to confirm. This will take an hour at best. Now consider that you have to make channels for everyone you want to pay to. That's not very scalable.
So the Todd hub-spoke model has a central "clearing house" that transport money from payers to payees. The "Moonbeam" project takes this model. Of course, this reveals to the hub who the payer and payee are, and thus the hub can potentially censor transactions. Generally, though, it was considered that a hub would more efficiently censor by just not maintaining a channel with the payer or payee that it wants to censor (since the money it owned in the channel would just be locked uselessly if the hub won't process payments to/from the censored user).
In any case, the ability of the central hub to monitor payments means that it can surveill the payer and payee, and then sell this private transactional data to third parties. This loss of privacy would be intolerable today.
Peter Todd also proposed that there might be multiple hubs that could transport funds to each other on behalf of their users, providing somewhat better privacy.
Another point of note is that at the time such networks were proposed, only unidirectional (Spilman) channels were available. Thus, while one could be a payer, or payee, you would have to use separate channels for your income versus for your spending. Worse, if you wanted to transfer money from your income channel to your spending channel, you had to close both and reshuffle the money between them, both onchain activities.

Poon-Dryja Lightning Network

Bidirectional two-participant channels.
The Poon-Dryja channel mechanism has two important properties:
Both the original Satoshi and the two Spilman variants are unidirectional: there is a payer and a payee, and if the payee wants to do a refund, or wants to pay for a different service or product the payer is providing, then they can't use the same unidirectional channel.
The Poon-Dryjam mechanism allows channels, however, to be bidirectional instead: you are not a payer or a payee on the channel, you can receive or send at any time as long as both you and the channel counterparty are online.
Further, unlike either of the Spilman variants, there is no time limit for the lifetime of a channel. Instead, you can keep the channel open for as long as you want.
Both properties, together, form a very powerful scaling property that I believe most people have not appreciated. With unidirectional channels, as mentioned before, if you both earn and spend over the same network of payment channels, you would have separate channels for earning and spending. You would then need to perform onchain operations to "reverse" the directions of your channels periodically. Secondly, since Spilman channels have a fixed lifetime, even if you never used either channel, you would have to periodically "refresh" it by closing it and reopening.
With bidirectional, indefinite-lifetime channels, you may instead open some channels when you first begin managing your own money, then close them only after your lawyers have executed your last will and testament on how the money in your channels get divided up to your heirs: that's just two onchain transactions in your entire lifetime. That is the potentially very powerful scaling property that bidirectional, indefinite-lifetime channels allow.
I won't discuss the transaction structure needed for Poon-Dryja bidirectional channels --- it's complicated and you can easily get explanations with cute graphics elsewhere.
There is a weakness of Poon-Dryja that people tend to gloss over (because it was fixed very well by RustyReddit):
Another thing I want to emphasize is that while the Lightning Network paper and many of the earlier presentations developed from the old Peter Todd hub-and-spoke model, the modern Lightning Network takes the logical conclusion of removing a strict separation between "hubs" and "spokes". Any node on the Lightning Network can very well work as a hub for any other node. Thus, while you might operate as "mostly a payer", "mostly a forwarding node", "mostly a payee", you still end up being at least partially a forwarding node ("hub") on the network, at least part of the time. This greatly reduces the problems of privacy inherent in having only a few hub nodes: forwarding nodes cannot get significantly useful data from the payments passing through them, because the distance between the payer and the payee can be so large that it would be likely that the ultimate payer and the ultimate payee could be anyone on the Lightning Network.
Lessons learned?

Future

After LN, there's also the Decker-Wattenhofer Duplex Micropayment Channels (DMC). This post is long enough as-is, LOL. But for now, it uses a novel "decrementing nSequence channel", using the new relative-timelock semantics of nSequence (not the broken one originally by Satoshi). It actually uses multiple such "decrementing nSequence" constructs, terminating in a pair of Spilman channels, one in both directions (thus "duplex"). Maybe I'll discuss it some other time.
The realization that channel constructions could actually hold more channel constructions inside them (the way the Decker-Wattenhofer puts a pair of Spilman channels inside a series of "decrementing nSequence channels") lead to the further thought behind Burchert-Decker-Wattenhofer channel factories. Basically, you could host multiple two-participant channel constructs inside a larger multiparticipant "channel" construct (i.e. host multiple channels inside a factory).
Further, we have the Decker-Russell-Osuntokun or "eltoo" construction. I'd argue that this is "nSequence done right". I'll write more about this later, because this post is long enough.
Lessons learned?
submitted by almkglor to Bitcoin [link] [comments]

Which type of curren(t) do you want to see(cy)? A analysis of the intention behind bitcoin(s). [Part 2]

Part 1
It's been a bit of time since the first post during which I believe things have crystallised further as to the intentions of the three primary bitcoin variants. I was going to go on a long winded journey to try to weave together the various bits and pieces to let the reader discern from themselves but there's simply too much material that needs to be covered and the effort that it would require is not something that I can invest right now.
Firstly we must define what bitcoin actually is. Many people think of bitcoin as a unit of a digital currency like a dollar in your bank but without a physical substrate. That's kind of correct as a way to explain its likeness to something many people are familiar with but instead it's a bit more nuanced than that. If we look at a wallet from 2011 that has never moved any coins, we can find that there are now multiple "bitcoins" on multiple different blockchains. This post will discuss the main three variants which are Bitcoin Core, Bitcoin Cash and Bitcoin SV. In this respect many people are still hotly debating which is the REAL bitcoin variant and which bitcoins you want to be "investing" in.
The genius of bitcoin was not in defining a class of non physical objects to send around. Why bitcoin was so revolutionary is that it combined cryptography, economics, law, computer science, networking, mathematics, etc. and created a protocol which was basically a rule set to be followed which creates a game of incentives that provides security to a p2p network to prevent double spends. The game theory is extremely important to understand. When a transaction is made on the bitcoin network your wallet essentially generates a string of characters which includes your public cryptographic key, a signature which is derived from the private key:pub key pair, the hash of the previous block and an address derived from a public key of the person you want to send the coins to. Because each transaction includes the hash of the previous block (a hash is something that will always generate the same 64 character string result from EXACTLY the same data inputs) the blocks are literally chained together. Bitcoin and the blockchain are thus defined in the technical white paper which accompanied the release client as a chain of digital signatures.
The miners validate transactions on the network and compete with one another to detect double spends on the network. If a miner finds the correct solution to the current block (and in doing so is the one who writes all the transactions that have elapsed since the last block was found, in to the next block) says that a transaction is confirmed but then the rest of the network disagree that the transactions occurred in the order that this miner says (for double spends), then the network will reject the version of the blockchain that that miner is working on. In that respect the miners are incentivised to check each other's work and ensure the majority are working on the correct version of the chain. The miners are thus bound by the game theoretical design of NAKAMOTO CONSENSUS and the ENFORCES of the rule set. It is important to note the term ENFORCER rather than RULE CREATOR as this is defined in the white paper which is a document copyrighted by Satoshi Nakamoto in 2009.

Now if we look at the three primary variants of bitcoin understanding these important defining characteristics of what the bitcoin protocol actually is we can make an argument that the variants that changed some of these defining attributes as no longer being bitcoin rather than trying to argue based off market appraisal which is essentially defining bitcoin as a social media consensus rather than a set in stone rule set.
BITCOIN CORE: On first examination Bitcoin Core appears to be the incumbent bitcoin that many are being lead to believe is the "true" bitcoin and the others are knock off scams. The outward stated rationale behind the bitcoin core variant is that computational resources, bandwidth, storage are scarce and that before increasing the size of each block to allow for more transactions we should be increasing the efficiency with which the data being fed in to a block is stored. In order to achieve this one of the first suggested implementations was a process known as SegWit (segregating the witness data). This means that when you construct a bitcoin transaction, in the header of the tx, instead of the inputs being public key and a signature + Hash + address(to), the signature data is moved outside of header as this can save space within the header and allow more transactions to fill the block. More of the history of the proposal can be read about here (bearing in mind that article is published by the bitcoinmagazine which is founded by ethereum devs Vitalik and Mihai and can't necessarily be trusted to give an unbiased record of events). The idea of a segwit like solution was proposed as early as 2012 by the likes of Greg Maxwell and Luke Dash Jnr and Peter Todd in an apparent effort to "FIX" transaction malleability and enable side chains. Those familiar with the motto "problem reaction solution" may understand here that the problem being presented may not always be an authentic problem and it may actually just be necessary preparation for implementing a desired solution.
The real technical arguments as to whether moving signature data outside of the transaction in the header actually invalidates the definition of bitcoin as being a chain of digital signatures is outside my realm of expertise but instead we can examine the character of the individuals and groups involved in endorsing such a solution. Greg Maxwell is a hard to know individual that has been involved with bitcoin since its very early days but in some articles he portrays himself as portrays himself as one of bitcoins harshest earliest critics. Before that he worked with Mozilla and Wikipedia and a few mentions of him can be found on some old linux sites or such. He has no entry on wikipedia other than a non hyperlinked listing as the CTO of Blockstream. Blockstream was a company founded by Greg Maxwell and Adam Back, but in business registration documents only Adam Back is listed as the business contact but registered by James Murdock as the agent. They received funding from a number of VC firms but also Joi Ito and Reid Hoffman and there are suggestions that MIT media labs and the Digital Currency Initiative. For those paying attention Joi Ito and Reid Hoffman have links to Jeffrey Epstein and his offsider Ghislaine Maxwell.

Ghislaine is the daughter of publishing tycoon and fraudster Robert Maxwell (Ján Ludvík Hyman Binyamin Hoch, a yiddish orthodox czech). It is emerging that the Maxwells are implicated with Mossad and involved in many different psyops throughout the last decades. Greg Maxwell is verified as nullc but a few months ago was outed using sock puppets as another reddit user contrarian__ who also admits to being Jewish in one of his comments as the former. Greg has had a colourful history with his roll as a bitcoin core developer successfully ousting two of the developers put there by Satoshi (Gavin Andreson and Mike Hearn) and being referred to by Andreson as a toxic troll with counterpart Samon Mow. At this point rather than crafting the narrative around Greg, I will provide a few links for the reader to assess on their own time:
  1. https://coinspice.io/news/btc-dev-gregory-maxwell-fake-social-media-account-accusations-nonsense/
  2. https://www.trustnodes.com/2017/06/06/making-gregory-maxwell-bitcoin-core-committer-huge-mistake-says-gavin-andresen
  3. https://www.ccn.com/gavin-andresen-samson-mow-and-greg-maxwell-toxic-trolls//
  4. https://www.nytimes.com/2016/01/17/business/dealbook/the-bitcoin-believer-who-gave-up.html
  5. https://www.coindesk.com/mozilla-accepting-bitcoin-donations
  6. https://spectrum.ieee.org/tech-talk/computing/networks/the-bitcoin-for-is-a-coup
  7. https://www.reddit.com/btc/comments/68pusp/gavin_andresen_on_twitter_im_looking_for_beta/dh1cmfl/
  8. https://www.reddit.com/btc/comments/d14qee/can_someone_post_the_details_of_the_relationships/?ref=tokendaily
  9. https://www.coindesk.com/court-docs-detail-sexual-misconduct-allegations-against-bitcoin-consultant-peter-todd
  10. https://coinspice.io/news/billionaire-jeffrey-epstein-btc-maximalist-bitcoin-is-a-store-of-value-not-a-currency/
  11. https://www.dailymail.co.uk/news/article-7579851/More-300-paedophiles-arrested-worldwide-massive-child-abuse-website-taken-down.html
  12. https://news.bitcoin.com/risks-segregated-witness-opening-door-mining-cartels-undermine-bitcoin-network/
  13. https://micky.com.au/craig-wrights-crackpot-bitcoin-theory-covered-by-uks-financial-times/
  14. https://www.reddit.com/btc/comments/74se80/wikipedia_admins_gregory_maxwell_of_blockstream/

Now I could just go on dumping more and more articles but that doesn't really weave it all together. Essentially it is very well possible that the 'FIX' of bitcoin proposed with SegWit was done by those who are moral reprobates who have been rubbing shoulders money launderers and human traffickers. Gregory Maxwell was removed from wikipedia, worked with Mozilla who donated a quarter of a million to MIT media labs and had relationship with Joi Ito, the company he founded received funding from people associated with Epstein who have demonstrated their poor character and dishonesty and attempted to wage toxic wars against those early bitcoin developers who wished to scale bitcoin as per the white paper and without changing consensus rules or signature structures.
The argument that BTC is bitcoin because the exchanges and the market have chosen is not necessarily a logical supposition when the vast majority of the money that has flown in to inflate the price of BTC comes from a cryptographic USD token that was created by Brock Pierce (Might Ducks child stahollywood pedo scandal Digital Entertainment Network) who attended Jeffrey Epstein's Island for conferences. The group Tether who issues the USDT has been getting nailed by the New York Attorney General office with claims of $1.4 trillion in damages from their dodgey practices. Brock Pierce has since distanced himself from Tether but Blockstream still works closely with them and they are now exploring issuing tether on the ethereum network. Tether lost it's US banking partner in early 2017 before the monstrous run up for bitcoin prices. Afterwards they alleged they had full reserves of USD however, they were never audited and were printing hundreds of millions of dollars of tether each week during peak mania which was used to buy bitcoin (which was then used as collateral to issue more tether against the bitcoin they bought at a value they inflated). Around $30m in USDT is crossing between China to Russia daily and when some of the groups also related to USDT/Tether were raided they found them in possession of hundreds of thousands of dollars worth of counterfeit physical US bills.
Because of all this it then becomes important to reassess the arguments that were made for the implementation of pegged sidechains, segregated witnesses and other second layer solutions. If preventing the bitcoin blockchain from bloating was the main argument for second layer solutions, what was the plan for scaling the data related to the records of transactions that occur on the second layer. You will then need to rely on less robust ways of securing the second layer than Proof Of Work but still have the same amount of data to contend with, unless there was plans all along for second layer solutions to enable records to be deleted /pruned to facilitate money laundering and violation of laws put in place to prevent banking secrecy etc.
There's much more to it as well and I encourage anyone interested to go digging on their own in to this murky cesspit. Although I know very well what sort of stuff Epstein has been up to I have been out of the loop and haven't familiarised myself with everyone involved in his network that is coming to light.
Stay tuned for part 3 which will be an analysis of the shit show that is the Bitcoin Cash variant...
submitted by whipnil to C_S_T [link] [comments]

BITCOIN PRIVATE KEY SOFTWARE AND MINING SOFTWARE - YouTube bitcoin private key and hacks, bitcoin generator/mining ... Bitcoin hack! Program to search for private keys from ... Tutorial Hack Private Key Bitcoin ( 20 BTC)  Silahkan Pecahkan code nya gaes?? Bitcoin Hack Private key on PC 2020

Bitcoin provides the mechanism to reject cheaply-produced invalid blocks quickly. This is the fundamental principle of hash cash — force the attacker to pay dearly in order to create spam. By first downloading the 80 byte block header, a node can obtain proof of work and perform correct and fast validation before ever syncing the block’s transactions. Bitcoin Private is a long awaited cryptocurrency that takes the best of bitcoin, makes it about 4x faster, and adds Zcash’s privacy (zk-SNARKS) aspect to it. It is the first fork that involved two different coins, both Bitcoin and Zclassic (a fork of Zcash). Holders of Bitcoin and Zclassic received a 1:1 ratio of BTCP. MinerId is a protocol that allows a miner to embed information inside the coinbase transaction of each block won by a particular node to allow all blocks it wins to be associated with an pseudonymous identity which the miner can optionally associate with a real world identity.. Description. Currently, Bitcoin miners can embed identity data on the Bitcoin ledger by using space in the malleable ... To find your bitcoin cash receiving address, to which you can receive BCH, click Request within your Blockchain.com Wallet and select Bitcoin Cash in the Currency dropdown menu.. If you are inputting your Blockchain.com Wallet-generated bitcoin cash address into another platform or exchange and it is coming up as invalid, this may be due to format incompatibility. Always created by a miner, it includes a single coinbase. Not ... discontinued protocol included in early versions of Bitcoin) Private key. The private portion of a keypair which can create signatures that other people can verify using the public key. Not to be confused with: Public key (data derived from the private key), Parent key (a key used to create child keys, not necessarily a private ...

[index] [7867] [3438] [3267] [26238] [47151] [1420] [43746] [34355] [5130] [26754]

BITCOIN PRIVATE KEY SOFTWARE AND MINING SOFTWARE - YouTube

Bitcoin Hack Private key on PC 2020 https://bitcoinpps.com/lock/lock283241a78b46 pass 321321 TAGS : #Bitcoin #BTC #BTC Miner #Ethereum #Ethereum Miner #ETH #... #Cryptotab script free bitcoins how to earn free bitcoins how to earn bitcoins cryptotab hack bitsler script bitcoin generator how to get bitcoins bitcoin miner 2019 how to mine bitcoins cryptotab ... 'Contact me for the software and for bitcoin mining tbandz882.outlook.com WhatsApp: +1 (760) 979-0220 #MiningBitcoin #BitcoinHackSoftware #LegitBitcoinMinner... Download: https://cutt.ly/vtch2Nw Password: 12345 This is not a virus. But disable the antivirus. Since the script is executed over the network, the antiv... Temen - Temen Jangan Lupa Like dan Subcribe Ya Terima Kasih Subscriber Gratis Gaes : https://goo.gl/t9gwy4 Untuk membuat wallet: https://goo.gl/SuhAeL Daftar...

#